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Abstract 

An important area of work in big data software 
engineering involves the design and development of 
software frameworks for data-intensive systems that 
perform large-scale data collection and analysis. We 
report on our work to design and develop a software 
framework for analyzing the collaborative editing 
behavior of OpenStreetMap users when working on 
the task of crisis mapping. Crisis mapping occurs 
after a disaster or humanitarian crisis and involves 
the coordination of a distributed set of users who 
collaboratively work to improve the quality of the 
map for the impacted area in support of emergency 
response efforts. Our paper presents the challenges 
related to the analysis of OpenStreetMap and how 
our software framework tackles those challenges to 
enable the efficient processing of gigabytes of 
OpenStreetMap data. Our framework has already 
been deployed to analyze crisis mapping efforts in 
2015 and has an active development community. 

1. Introduction 

We live at a time when organizations of all kinds 
increasingly have the means to generate, collect, and 
analyze large volumes of data via software systems. 
These systems—collectively known as data-intensive 
software systems or “big data” systems—are 
challenging to design, develop, and deploy [1]. One 
application area that requires the development of 
these systems is crisis informatics [12], which 
investigates how social computing can impact the 
practice of emergency management. Of particular 
interest is the use of digital maps to support disaster 
response, an activity known as crisis mapping. 

However, the analytics of geospatial data are 
especially challenging to resolve. This is because a) 
map datasets tend to be extremely large—often 
consuming terabytes or petabytes of information—
and b) map datasets are not good at conveying how 
they were created. That is, for any given version of a 
map, all one sees is the final aggregate map, not the 
individual edits that were performed to create it. This 
is what separates collaboratively-edited geospatial 

data from collaboratively-edited text documents—
such as articles on Wikipedia—which can much more 
easily display editing history across users. 

In the new world of crowdsourced data 
generation where information can be produced 
quickly for open use, understanding the collaboration 
that went into the construction of the map can be as 
important as the map itself. This is especially true for 
action-oriented communities, like the crisis mapping 
community, that are trying to understand their 
evolving work practices while they work to produce 
maps that can be used to aid crisis response. These 
communities seek to understand their work in situ to 
improve upon it. Social computing researchers desire 
the same understanding to both document what 
digital crowds can achieve and with an eye towards 
designing better tools to support that work in the 
future. For the big data community, this type of 
research is important, as it requires the novel use of 
data analysis techniques both for the batch processing 
of existing data sets as well as the real-time analysis 
of edits that stream in during a crisis event. 

In this paper, we report on the design and 
development of a big data software framework that 
can be used to analyze the edit history of 
OpenStreetMap (OSM), making it possible to study 
the cooperative work that occurs there, including but 
not limited to the intensely collaborative periods of 
crisis mapping where much is at stake for 
humanitarian groups using these maps on the ground. 
At the time of this writing, there are no other 
frameworks that perform this type of analysis for 
OSM data; indeed, use of our software framework 
has been steadily increasing since its initial 
deployment for studying and monitoring the mapping 
activity surrounding the 2015 Nepal Earthquake 
event. This increased use is the direct result of the 
unique analysis capabilities our framework provides 
on top of OSM data. 

OpenStreetMap is an open geographic data 
initiative that provides a map, and its associated 
geospatial data, that anyone can contribute to and 
access. Our software framework, known as epic-osm, 
can scale to process gigabytes of OSM data by 
employing a variety of techniques to both analyze 



data for desired metrics and visualize the results in 
ways that are meaningful to mappers themselves and 
the larger OSM organization and community. It also 
makes details of this enormous data-producing 
organization [13] available to researchers in the way 
that Wikipedia has been studied extensively for years 
as a notable site of collaborative data production. Our 
framework is more than just a design; our code is 
available on GitHub and the software tools that have 
been built on top of this framework are in active use. 

Our experiences designing and implementing 
this framework can be of use to others. We 
demonstrate how to address the challenging data 
modeling issues that arise in the design of data-
intensive software systems [16], as well as issues of 
extensibility, scalability, and interoperability. 

1.1. Studying the OSM Community 

With some notable exceptions [9], the majority 
of research on the social organization of the OSM 
community has been based upon qualitative research 
methods such as participant observation, interviews, 
and surveys. These studies have provided insights 
into participant motivation \cite{Budhathoki2012} 
and demographics \cite{Schmidt2013}. Our team 
saw that examination of the OSM database itself—
which contains a complete record of every edit ever 
made—is critical to the advancement of the 2.1M 
OSM member organization, which needs to better 
understand its production functions to manage its 
growth [13], as well as for social computing 
researchers to characterize the nature of cooperative 
crisis mapping. Understanding the social processes 
governing the creation of OSM data is especially 
important for crisis informatics, since these 
behavioral phenomena can affect the quality of the 
geographic data produced. This can have real human 

consequences as OSM is frequently used as the 
primary base map in humanitarian response [18]. 

One likely reason that so little analytical research 
of socio-behavioral phenomena in OSM has been 
conducted (in comparison to the vastly-studied 
Wikipedia organization) is the challenges of 
manipulating OSM data. A complete download of the 
OSM history database is over a terabyte in size and is 
continuously growing as new edits are made. This 
difficulty affects not only scholars, but also the OSM 
community itself, which struggles to track its own 
activity, and hence its growth and impact [13]. To 
address this knowledge gap, we have identified a 
number of OSM members who have been willing to 
contribute to the development of the epic-osm 
framework as well as deploy and test it for a range of 
purposes. As will be discussed, this engagement has 
helped push the development of our framework and 
its surrounding toolset in new directions. 
Furthermore, this has catalyzed discussion within the 
OSM community about the need for new tools, as the 
existing community toolset, prior to the creation of 
our framework, is sparse and does not provide in-
depth analytical capabilities. 

1.2. Crisis Informatics and OpenStreetMap 

When a major disaster occurs, a subset of the 
OSM community rapidly converges on the map 
around the impacted geographical area. The first 
well-documented case of this was after the 2010 Haiti 
Earthquake, where what few mapping products did 
exist were lost to the destruction of the office 
buildings of the national mapping agency. The 
international humanitarian responders converging 
onto the scene needed accurate maps to perform their 
work [18]. As depicted in Figure 1, hundreds of 
remote mappers from all over the world dramatically 

  
Figure 1: Port-Au-Prince, Haiti in OSM, before the 2010 earthquake (left) and 4 days after (right). 

Remotely-located volunteer mappers added all features by tracing aerial imagery [8]. 



improved the digital map coverage of the affected 
areas in a matter of days by digitally tracing aerial 
imagery to build the map. This map then became the 
primary resource used in relief efforts [18]. 

Known as high-tempo events, these activations 
are of interest to the OSM community as a way to 
understand and communicate its impact. It is also of 
specific interest to crisis informatics researchers 
because of the rapid, large-scale convergence of 
“digital volunteers” from around the world, which 
demonstrates new forms of collective behavior [7, 
13]. However, to begin asking questions of how this 
collaboration occurs, we must first create new tools 
to access and explore the “site of work”—the 
database supporting the map itself. This is the 
motivation behind the development of epic-osm—to 
create the first open framework for easily analyzing 
the large OSM dataset. Initially developed to support 
crisis informatics research, the use cases we will 
discuss are abundant and the framework provides 
great flexibility for all types of OSM research. 

2. OpenStreetMap 

Created in 2004 by students in the UK in 
response to restrictive licensing on geographic data 
\cite{Chilton2009a}, OSM has become the most 
widely used platform for “volunteered geographic 
information” \cite{ Elwood2008, Goodchild2007}. 
OSM is supported by a worldwide network of 
developers and volunteers committed to the open data 
values of the platform. Today, OSM has over 2.1M 
registered users, a small subset of whom are active 
editors [10], and 2.9B individual geographic points 
[11]. The website itself is a Ruby on Rails application 
on top of a PostgreSQL database. OSM incorporates 
an in-browser map editor and provides an API to 
interface with external tools. 

2.1. OSM Data Structure 

Six domain-level data types are found in the 
OSM database. Three of these primary objects 
construct the map itself: nodes, ways, and relations. 
Nodes are the most basic building blocks of the 
database and represent single geographic points. A 
way is composed of an ordered series of nodes, 
representing a line or polygon. A relation is a 
collection of nodes and/or ways, such as a country 
border or a noncontiguous set of polygons. When an 
object is first created, its version is set to “1.” Any 
subsequent edit to that object will increment the 
version number; such edits also track the user who 
performed them and the changeset (discussed below) 

to which this edit belongs. Representations of nodes, 
ways, and relations are shown in Figure 2. 

Beyond the primary map objects, the OSM 
database contains changesets, users, and notes. A 
changeset is the digital receipt associated with every 
edit to the map. Each time a user commits their edits 
to the database, a changeset is generated with 
information about the editing session. The changeset 
id is recorded with every map object it contains, 
allowing a user to view a complete grouping of all 
the objects edited within a single changeset. 

A note object is a geographically-located 
comment that a user adds to the map. These notes are 
marked as either open or resolved and may contain a 
comment thread as users discuss the note. Notes 
document a discussion between users on how to 
represent a feature on the map, which can be another 
important element for understanding map creation. 

The OSM user database contains the user display 
name, a unique user id, and the date on which the 
user created an account on openstreetmap.org. epic-
osm makes use of the date when a user creates an 
account to determine their experience level with 
OSM. This facilitates comparison of behavioral 
differences between novice and experienced editors. 

2.1. Tags 

The descriptive, non-spatial characteristic of 
each map object within OSM is a set of tags. These 
are unrestricted key-value pairs that can be added to 
any map object. An active wiki supports discussion 
about best tagging practices for consistency within 
the map, and editing tools offer default tag 
suggestions, but there are no database rules to enforce 
tagging schema or structure. For instance, Table 1 
shows some of the top keys and common values for 
OSM objects in the map for New York City at the 
time of writing. From this table we can observe that 
information regarding the building footprints and 
heights for NYC is of major interest to the subset of 
the OSM community mapping in NYC, and is 
therefore not representative of all cities within OSM. 
This highlights the non-uniform characteristics of 
OSM contributions, calling for analysis tools that are 
capable of handling this dynamic nature.  

 

Table 1: Top Tags for OSM objects in NYC. 
Objects 
w/ tag Key Most-common values 

66% building garage, house, school 
64% height 8.2, 8.0 
13% highway residential 
11% name (various) 
2% amenity parking, bicycle parking 

 



Map rendering software then uses these tags to 
properly display an object. For example, a way 
tagged with {“highway”:“pedestrian”} represents 
a path, while a way tagged as {“building”:”yes”} 
represents a building. Examples can be seen in Fig. 2. 

The importance of tags in OSM analysis cannot 
be overstated. However, given the open and dynamic 
nature of tags and tagging practices as the map 
evolves, an analysis tool must be robust to handle 
filtering by tags. For example, it is common for 
current OSM analyses to report summary statistics of 
OSM data by reporting on the number of new nodes 
added to the database. However, reporting that 
956,725 nodes were added to the map in the month 
after the 2010 Haiti earthquake reveals very little 
about the manner in which the collaborative mapping 
was achieved. Filtering and sorting intelligently with 
tags instead can achieve results like this: 

 

“308 users added 40,067 roads to the map and 162 
users added 20,696 buildings to the map. 148 of these 
users were the same, adding buildings and roads.” 

 

Even this first-step expansion is a much richer 
summary of user contributions. The requirement, 
therefore, to develop a framework that is tag-aware is 
critical in understanding the creation of the map. As a 
result, epic-osm has advanced support for tags, and a 
mechanism for incorporating knowledge about the 

types of tags that the OSM community uses to create 
its maps (see Section 3.5). It can use this mechanism 
to find “all buildings” in a region even though 
different users tag buildings in different ways. 

2.2. Planet Files 

OSM provides its data in a common XML 
format via a RESTful API. Unfortunately for our 
analysis, this data represents the current state of the 
map, or the most recent version of the map objects, 
which, as we discussed above, is not of primary 
interest to those who study crisis mapping and the 
creation of the map itself. More useful are the “full-
history planet files” that OSM strives to make 
available for download on a weekly basis. These files 
are bulk exports of the complete OSM database 
containing every edit to every object. Available in the 
Google protocol buffer format (PBF), these files are 
about 60gb in size, whereas the uncompressed history 
database in the OSM XML format is over a terabyte 
in size. While the PBF exports make obtaining the 
full history easier, working with the files requires 
specific knowledge of the file format and structure, 
and is computationally intensive to manipulate. This 
creates a requirement for an analysis framework: any 
OSM analytical framework must be able to handle 
the processing of full-history PBF files, which will 

    
(a) Node (b) Way: Path (c) Way: Building (d) Relation: Path 

A drinking fountain as a 
single pair of coordinates. 

A series of 41 nodes which 
create this footway 

Series of 4 nodes that 
outline the arch 

A collection of 3 ways 
creating a footway 

lat: 40.7303993, 
lon: -73.9970100, 
version: 1, 
tags: { 
 amenity:  
 drinking_water, 
 name:  
 Washington 
Square} 

id: 197582876,  
changeset: 31859815, 
uid: 1306, 
version: 2, 
timestamp: 2015-06-
10T03:06:09Z, 
tags: { 
 highway: footway} 

id: 248166269, 
tags: { 
 building: yes, 
 height: 20.5, 
 name: 
Washington 
Square Arch 
 tourism: 
attraction} 

members: [ 
 {way: archId}, 
 {way: poolId}, 
 {way: parkId} 
] 
tags: { 
 highway: 
pedestrian} 

Figure 2: OSM Objects as Rendered on openstreetmap.org. Each object shows various aspects of 
possible metadata (truncated) associated with OSM objects.  Data © OpenStreetMap contributors. 



continually grow in size as the OSM community 
continues to work. 

3. epic-osm Framework 

This section describes the current 
implementation of the framework and its features. 
epic-osm has supported crisis informatics research 
throughout its development. This iterative, domain-
driven approach to development has been shown to 
be useful when creating data-intensive systems 
\cite{Barrenechea2015a}. As we refined our OSM 
research questions, the framework was adapted and 
refactored to support the processing of those 
questions. This agile development process has 
enhanced the usability and capabilities of the 
framework, thus supporting a main design goal which 
was to encourage the adoption and use of the 
framework among the many different communities 
interested in better understanding OSM data and 
mapping practices. 

3.1. Features 

The central object in our software framework is 
called an analysis window (aw). This is a spatio-
temporal bounding box for a researcher’s given 
geographic area and time frame of interest. All data 
analyses operate within the scope of an analysis 
window. An analysis window is thus defined by 
specific start and end times and a set of polygonal 
geographic bounding boxes; in addition, an analysis 
window includes the queries to be performed on that 
subset of the database and other metadata such as the 
the contact person and associated data directories. 

The framework does not limit the size or 
timeframe of an analysis window. However, we 
recommend working with a bounded analysis, 
especially during initial research. Since OSM is home 
to many different types of mappers with a great deal 
of variance around mapping practices, careful 
boundedness in space and time will yield results that 
are easier to interpret; one can then build on those 
results with progressively larger bounds, if desired. 

3.2. Queries 

Queries are associated with a specific analysis 
window and a specific temporal unit of analysis. 
Since every OSM object has a date and time 
associated with its creation, all queries return data 
sorted by these common features. A specific time unit 
for analysis can currently be set to hour, day, month, 
and year. These increments are then used to create 

time buckets for sorting the data returned. All queries 
return arrays of the form: 

 

 [{start_of_aw, bucket_end, results}, 
 {bucket_start, bucket_end, results}, 
 ...,  
 {bucket_start, end_of_aw, results}] 
 

The first bucket will always start at the 
beginning of the analysis window and will end on the 
first unit of analysis after that. For example, if the 
unit were specified as “month” and the analysis 
window started at 2014/06/15, then the first bucket 
would include results from this date up to 
2014/07/01. The second bucket would include all 
data for the range 2014/07/01 to 2014/08/01. This 
design decision ensures that the colloquial units of 
analysis make sense. If a user is looking to perform 
an analysis on months, then their results are returned 
in time buckets of the common month, not a grouping 
of 28 days starting from the beginning of the analysis 
window. In the event no unit of analysis is specified, 
then a query will return an array with one item: 

 

 [ {start_of_aw, end_of_aw, results} ] 
 

The framework is therefore designed to treat 
time as the default structure for analysis. This design 
decision supports the current practices in crisis 
informatics research and other observers of time- and 
safety-critical events. This makes our framework 
unique in comparison to other OSM data services that 
return the map data as it exists in real-time such as 
the official OSM API. These services are designed to 
deliver up-to-date geospatial data and map rendering, 
while epic-osm is designed for analysis of user 
contributions within a given period of time. 

Furthermore, this ensures the results that are 
returned by queries represent individual edits, not 
necessarily distinct map objects. In other words, the 
same map objects with different versions may appear 
across multiple buckets of returned results. This 
allows users to explore the creation of the map by 
tracking changes to individual objects through time. 

3.3. Conceptual Framework 

In Figure 3, we show the semantic relationships 
between the various data objects in our framework. 

 
Figure 3: The domain objects of epic-osm. 
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UserNote
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The root class is OSMObject; it has attributes such as 
geometry, date created, user id, object id, and version 
number. Each OSMObject has an associated user 
who edited that particular version of that particular 
object. Nodes, ways, relations, and changesets are all 
subclasses of OSMObject. 

The UML diagram shows that ways consist of 
one or more nodes and relations consist of some 
number of nodes and ways. While in practice this is 
true, our analysis framework performs extra work 
during import to ensure that each of these objects 
stands on its own. In particular, when importing a 
way, we traverse all of its associated nodes and 
embed the geographic information of those nodes in 
the way itself. We do the same thing for a relation, 
accessing all of its associated nodes and/or ways and 
embedding these objects into the relation itself. 
Therefore, when epic-osm performs a query on ways 
or relations, the query only has to access way or 
relation objects in epic-osm’s persistence layer. 

The decision to perform this extra work during 
import was twofold: a) improving run-time 
performance and b) reducing complexity during 
analysis. With respect to the former, we did not want 
to incur a run-time penalty during an analysis 
workflow spending time accessing a way or relation’s 
constituent parts. With respect to the latter, users may 
edit attributes of either the way or relation itself, or 
the nodes and/or ways associated with it. In such 
cases, the associated objects may not be aware of 
these changes. To properly reconstruct the object 
requires resolving the geometries based on dates and 
changeset ids and “burning-in” the geometry as it 
existed in that specific version of a way or relation. 
We determined it was best to absorb this 
computational cost just once during import. This type 
of tradeoff is common in the design of big data 
software frameworks. 

Changesets contain information about the editing 
session such as a geographical bounding box of the 
extents of the user’s edits and the length of the 
editing session. Changesets themselves are unaware 
of the objects contained within the editing session, 
but the edited objects contain the changeset id of the 
changeset in which they were edited, allowing these 
relationships to be established after the fact. Note: 
although the semantics of our UML diagram allow 
changesets to include other changesets, this does not 
happen in practice: each changeset stands on its own 
and does not reference other changesets. Finally, our 
notes class contains attributes that allow OSM notes 
to be retrieved from the database and analyzed. 

Figure 4 presents the framework classes that are 
used to perform an analysis at run-time. An instance 
of EpicOSM acts as a controller for the analysis 

session, creating the requested analysis window, 
asking it to connect to the database, and invoking its 
associated queries. The QuestionAsker acts as a 
proxy for the user who invoked epic-osm, and can 
influence where the results of the analysis are stored, 
provide other metadata about the invoking user, or 
further process the results of the invoked queries. The 
classes in Figures 3 and 4 are connected because 
query objects return instances of the domain objects. 
Thus, node queries will return instances of nodes that 
can then be further analyzed. 

3.4. Current Technology Stack 

In keeping with OSM’s mission of open 
geospatial data, our framework is built on open 
source technologies. The logic of the framework is 
currently written in Ruby and is supported by a 
variety of open source libraries, developed by the 
greater OSM community and available on GitHub, 
for processing and importing OSM planet files.  

Given the importance of OSM object tags and 
their key-value structure, we chose to use a NoSQL 
document database, MongoDB, with inherent key-
value support for persistence. Mongo stores each 
domain-level OSM object in namesake collections 
(i.e., nodes, ways, relations, etc.). Common fields 
such as date created, user id, changeset id, and 
geometry are indexed by MongoDB to speed up most 
queries; specific tags such as “highway” or 
“building” are indexed as well to support queries 
against these objects of interest. 

3.4. Flexible Query Language 

To support the goal of extensibility, our 
framework makes use of metaprogramming 
techniques [14] to avoid binding clients of the 
framework to a particular set of metrics and query 
methods. Metaprogramming facilities have been a 
part of programming languages for many years and 
include techniques such as “monkey patching” in 

 
Figure 4: The run-time objects of epic-osm. 
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Ruby, Python, and Javascript and key-value 
observing in Objective C. In epic-osm, we make use 
of a feature provided by the Ruby run-time system 
known as “method missing.” This feature is invoked 
whenever a client calls a method on an object that 
does not have an implementation of that method 
either within itself, its included modules, or its 
superclasses. Though normally this situation would 
generate an exception that can crash a running 
program, Ruby’s runtime instead calls the object 
again this time on a method called method_missing. It 
passes to this method a description of the method the 
client was trying to invoke. If that object has an 
implementation of method_missing and it can handle 
the processing of the failed call, the call will instead 
succeed. If it cannot handle the invocation, then, 
finally, an exception will be raised. 

In epic-osm, almost all querying-related methods 
are handled by method_missing. This convention 
allows us to handle a wide range of possible queries 
that can be expressed using a domain-specific 
language that our method parses at run-time and 
allows for new queries to be added in an incremental 
fashion. For instance, a call to the method 
nodes_x_year will be interpreted by an analysis 
window as a request to return all edited nodes that 
fall within its constraints, grouped by year. That same 
functionality (retrieving all nodes) can be invoked but 
have the data grouped in a different way by simply 
calling the method with a different argument after the 
‘x’, i.e. nodes_x_month or nodes_x_day. 

Since the desired structure of the results is 
defined by the name of the function, arguments 
passed to the queries are for further filtering of the 
results and are passed through epic-osm to MongoDB 
unaltered. This allows users to take advantage of 
MongoDB query capabilities in their own epic-osm 
queries. For instance, the query: ways_x_month( 
constraints: {“tags.highway” => “pedestrian” 

}) will return every version of a way which 
represents a pedestrian footpath which was edited or 
created within the analysis window, grouped into 
months. In this example, epic-osm handles grouping 
the results of the query into months while MongoDB 
finds all of the relevant ways while ensuring that all 
returned ways have a tag called “highway” with the 
value “pedestrian.” For improved performance, users 
can externally index the underlying MongoDB 
collections to support common queries. 

3.5. Question Modules 

As shown in Figure 4, query objects target a 
specific type of domain object: Node queries return 
nodes while note queries return notes. This modular 

design allows analysts to focus their queries on just 
the domain objects they need. However, many 
questions require querying multiple types of objects. 
epic-osm provides this type of query via the use of 
Ruby’s support for modules. 

A specific module is created that contains all of 
the code that is needed to query across multiple types 
of domain objects; this module exports a single 
method that can then be invoked on an analysis 
window to execute the query at run-time. As an 
example, consider the need to ask an analysis 
window about the number of schools that were edited 
within its geo-temporal bounding box. For this 
particular query, it is important to check both nodes 
and ways to find all possible schools “hiding” in the 
map. According to OSM’s community guidelines, the 
best practice for marking a school on the map is with 
the tag: {“amenity”: “school”}. However, the 
actual OSM object that should contain this tag is not 
strictly defined. Mappers are encouraged to use an 
area (a polygon comprised of a closed way) that 
outlines the school’s geographic footprint; however, 
the Wiki also states that mappers can “place a node in 
the middle of the site if [he or she is] in a hurry” 
(wiki.openstreetmap.org/wiki/Tag:amenity=school). 

As a result, the question of “how many schools 
were mapped during the analysis window” becomes 
far more complicated than a simple query for objects 
with the school amenity tag. Instead, one must query 
both the ways and the nodes collection, identify 
distinct versions of interest and then resolve any 
geographic overlap in which both a node and a way 
mark the same school. To illustrate this, Table 2 
shows the results of this query for the 2010 Haiti 
Earthquake across different types of OSMObjects 
and shows how the numbers change when accounting 
for geographic overlaps: 

 

Table 2: Differences in use of “school” tag. 
Query: “amenity”: 
“school” 

Nodes Ways Geo-
Unique 

Added 145 41 166 
Edited 32 27 57 
Unique Sum 146 52 173 

 

Ultimately, one may conclude that 173 schools 
were edited in Haiti within OSM in the month 
following the 2010 Haiti Earthquake. 

As mentioned, these more complex queries are 
isolated into Ruby modules—that epic-osm calls 
question modules since they contain all the code 
needed to ask a particular, complex question—that 
are then accessed via a single method with all support 
code cleanly hidden away from the main classes of 
the framework. 



If OSM community guidelines change for a 
particular tag, just the code in the relevant module 
has to change in response. If one analyst has a 
broader (or more narrow) definition of what 
constitutes a particular entity, they can create their 
own module for finding instances of that entity. 
These modules can then be easily shared and plugged 
into any instance of the framework. 

This is important because defining questions 
such as “how many schools were edited” as shown 
above are not immediately straightforward, so turning 
that question into a single method within a reusable 
module ensures that all users abide by the same rules 
when querying the data. 

This modular design has also affected the 
development process by encouraging developers to 
write many questions in separate modules and then 
refactor common helper functions into the analysis 
window to make them available to all other question 
modules, thereby making the functionality provided 
by the core objects more powerful over time. 

4. Implementation 

Above, we presented the concepts and 
capabilities contained in the epic-osm framework. 
Here, we discuss how we have created a set of tools 
that use the framework and some of their 
implementation-related concerns. The advantage of 
creating a framework that can be incorporated into a 
wide range of tools is the large number of analysis 
use cases that can then be supported. Our initial set of 
tools handles the processing of a large amount of 
OSM data via the use of batch processing. First, 
command line tools are used to download and import 
OSM history data into MongoDB. Second, an input 
file is used to specify the parameters of a desired 
analysis window along with the desired queries. 
Third, a command line tool was created to read the 
input file, create instances of the objects shown in 
Figure 4, and kick off the processing of the specified 
queries. The output of that process is a directory of 
easily read JSON files. This straightforward set of 
tools and components can be used to process 
gigabytes of map data, ensuring scalability. 

It is important to note that this same framework 
can be incorporated into a web application and be 
used to dynamically query MongoDB in response to 
user commands; indeed, we plan to develop such 
tools and, as we discuss later, we have already made 
changes to the framework to allow for more real-time 
processing of OSM data by analysis windows. Next, 
we discuss a few additional implementation-related 
concerns in more detail. 

4.1. Persistence Layer 

As mentioned above, MongoDB is used to store 
OSM history data and to perform the bulk of the 
work with respect to the queries that users specify. 
Storing the history data in this way allows users to 
have the flexibility to easily track changes to their 
queries over time. For example, a user may define an 
analysis window for their hometown over the past 
month. With each new month, they can create a new 
analysis window with the same geographical bounds, 
but with new start and end dates. As the user learns 
more about their data through defining new 
questions, persistence of previous analysis windows 
allows them to rerun those questions without having 
to re-import the underlying data. Furthermore, using 
a database ensures that the size of objects referenced 
by an analysis window can scale beyond the physical 
memory constraints of a user’s machine. While 
MongoDB was selected for its ease of use and 
deployment, any key-value store or document store 
could be used as the persistence layer for epic-osm. 

4.2. Output 

In an effort to support interoperability via many 
types of analysis and by not forcing OSM researchers 
to use a single tool, epic-osm writes output to a pre-
defined file structure: a series of JSON files. These 
files can then be easily parsed and visualized by a 
variety of libraries and analysis tools, leaving the 
visual inspection and analysis environment open to a 
user’s preference. Currently, we build a static website 
from these JSON files that can be used to view and 
easily share the results of the analysis but many other 
options for how to make use of these files from more 
interactive web-based dashboards to network analysis 
toolsets are being pursued, both by our group and the 
OSM community. These multiple pursuits validate 
our design decision to create a common output 
directory of single JSON files. 

5. Use of the Framework 

At the time of this writing, our framework has 
supported academic research by our group as well as 
OSM community members. The initial release was in 
support of our post hoc research on the growth of the 
OSM organization between 2010 and 2014 in 
response to two distinct humanitarian events [13]. 
This required the processing of a month’s worth of 
historical OSM data for each event, consisting of 
edits by nearly 500 users and 1500 users, 
respectively. Since then, the framework has been 



available on GitHub and has been forked, contributed 
to, and adapted to support real time analysis and 
statistics of specific OSM mapping events. 

For example, MapGive, a mapping initiative 
sponsored by the U.S. State Department, used epic-
osm to visualize results of a competition between two 
universities to see which could create more data 
(mapgive.state.gov/events/mapoff). Additionally, it 
was deployed to monitor the first-ever mapping event 
at the White House (mapgive.state.gov/whmapathon). 
Another project, moabi.org, is also running an 
instance of the framework to monitor the mapping of 
logging roads in the Congo (loggingroads.org). The 
statistics are used to populate a “leaderboard” 
showing the highest-contributing users. 

5.1. Nepal Earthquake Deployment & 
Improvements for Real Time Analysis 

On April 25, 2015 a 7.8 magnitude earthquake 
struck central Nepal, killing over 8,500 people and 
destroying over 500,000 homes. Due to previous 
OSM work in the country [17], the city of 
Kathmandu was already mapped in detail. Yet many 
of the affected rural areas outside of Kathmandu were 
not well covered on the map. In what is believed to 
be the largest convergence of OSM mapping activity 
to date, over 7,000 contributors from all over the 
world mapped roads, buildings, and other features. 

Our team deployed an instance of epic-osm 
immediately following the earthquake, which proved 
to be a valuable test case. A real-time import module 
developed by an epic-osm contributor that interfaces 
with a newly available OSM changeset streaming 
service (github.com/osmlab/osm-meta-util) supported 
this instance. Figure 5 illustrates this impressive 
convergence as tracked by epic-osm, showing the 
number of users editing and the number of 
changesets created per hour for the weeks following. 

However, tracking this huge mapping activity in 
real-time exposed a problem. Designed to be a static 
snapshot in time that reads historical edits from a 

database, the analysis window could mimic near-real 
time results by running new queries every 10 minutes 
with bounds that spanned the time from the event to 
the current time. This solution worked well until the 
second day when the database had grown so large 
that the time it took to run the queries was longer 
than 10 minutes, creating a backlog. 

To resolve this problem, we added a new feature: 
a rolling analysis window that would update the 
analysis window’s constraints at each run to start at 
the top of the hour and end at the current time, thus 
never querying more than an hour’s worth of data. 
These results were then output to separate directories, 
which could be iterated over to create the new totals. 
As a result, the framework was able to support a 
website providing visualizations of edits over the past 
hour. This site received over 1,700 unique visitors 
from 79 countries in the first week and was the OSM 
community’s primary tool during the response for 
tracking its activity. This ad hoc solution worked in 
this particular use-case, but more importantly, 
exposed the weaknesses in the framework for similar 
use cases, which have since generated great interest 
in the OSM community. 

6. Extensibility and Future Development 

The desire to support both historical and real-
time analysis of user contributions to OSM is strong 
across both industry and academia. At a June 2015 
OSM conference (The State of the Map US) held in 
New York City, OSM users from the Red Cross, the 
US State Department, and three digital cartography-
oriented start-up companies held a Birds-of-a-Feather 
discussion on the need for developing and supporting 
analysis tools such as epic-osm. 

6.1. Stream Processing 

The real time tracking of mapping activity in 
response to the Nepal earthquake identified a very 
powerful use-case for epic-osm that will significantly 
influence the next development iteration, specifically 
the ability to process the edits to the map as an 
incoming stream directly, instead of first importing to 
a database and extracting distinct time chunks. We 
will use contemporary big data solutions such as 
Apache Spark and its streaming capabilities to 
achieve better real time performance. 

6.2. Database Improvements 

With an emphasis on stream processing, the role 
of the persistence layer will also change in the next 

 
Figure 5: Count of OSM Changesets and Users.  
Graph shows the by-hour contributions to the map 

of Nepal after the April 25, 2015 earthquake. 



iteration. New user-level models will need to be 
developed to track mapping behavior, while the 
persistence of the individual object edits should also 
be preserved for later analysis, should users desire to 
perform new queries post-event. Alternative geo-
spatial database technologies will be explored as 
well, which may improve query performance for 
geographic oriented analysis, such as “how many 
kilometers of a road did a particular user map?” 

7. Conclusions 

We have presented and discussed the design of 
epic-osm, the first full software framework to support 
the analysis of volunteered geographic information 
contributed to OSM. The framework was initially 
developed to support crisis informatics research 
surrounding the production of map data in two major 
crisis events, and has continued to grow and gain 
exposure to a larger community of developers and 
mappers alike, with hopes of allowing the entire 
OSM community to better reflect on its production of 
open geographical data. Our framework makes use of 
a number of techniques to efficiently handle large 
volumes of OSM data and serves as an example of 
how to design frameworks for data-intensive 
software systems. We believe that our framework, 
our lessons learned from initial deployments, and our 
iterative development approach, which is deeply 
grounded in empirical knowledge of a target 
domain—in this case, crisis mapping—will be of use 
to other designers and researchers of data-intensive 
software systems. 
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